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Generalised P-representations in quantum optics 

P D Drummond? and C W Gardiner 
Department of Physics, University of Waikato, Hamilton, New Zealand 

Received 5 July 1979, in final form 2 January 1980 

Abstract. A class of normal ordering representations of quantum operators is introduced, 
that generalises the Glauber-Sudarshan P-representation by using nondiagonal coherent 
state projection operators. These are shown to have practical application to the solution of 
quantum mechanical master equations. Different representations have different domains of 
integration, on a complex extension of the usual canonical phase-space. The ‘complex 
P-representation’ is the case in which analytic P-functions are defined and normalised on 
contours in the complex plane. In this case, exact steady-state solutions can often be 
obtained, even when this is not possible using the Glauber-Sudarshan P-representation. 
The ‘positive P-representation’ is the case in which the domain is the whole complex 
phase-space. In this case the P-function may always be chosen positive, and any Fokker- 
Planck equation arising can be chosen to have a positive-semidefinite diffusion array. Thus 
the ‘positive P-representation’ is a genuine probability distribution. The new represen- 
tations are especially useful in cases of nonclassical statistics. 

1. Introduction 

The coherent state basis has proved invaluable in quantum optics and quantum 
statistical mechanics (Glauber 1963a, b, Sudarshan 1963). 

Using this basis, phase-space Fokker-Planck equations can be developed that 
correspond to quantum master equations for the density operator (Haken 1970, 
Louise11 1974). The Fokker-Planck equations are relatively simple, and observables 
can be directly calculated as correlations of the distribution function, or P-function. 

In general, however, the Glauber-Sudarshan P-representation-which is a diagonal 
expansion of the density operator in coherent states-results in a distribution that can 
have negative values and delta-function singularities. This occurs especially in cases of 
nonclassical photon statistics, recently observed in experiments (Kimble et a1 1978, 
Leuchs et a1 1979) on atomic fluorescence as predicted by Carmichael and Walls 
(1976). The purpose of the present paper is to introduce a class of generalised 
P-representations, which are well-behaved even when the Glauber-Sudarshan 
P-representation is singular. The new P-functions have similar time-development 
equations and observables to those of the Glauber-Sudarshan P-function. However, 
they are defined in a complex phase-space instead of a real (classical) phase-space. This 
allows the solution of quantum optical problems involving nonclassical photon statis- 
tics, in a straightforward way. 

We believe the introduction of a reasonably rigorous basis for these methods is 
timely, since they have been in use without proof for some two years already (Chatur- 
vedi et a1 1977, Drummond and Carmichaell978, Drummond et aZ1979, Drummond 
i Present address: University of Rochester, Department of Physics and Astronomy, Rochester, New York 
14627. USA. 
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2354 P D Drummond and C W Gardiner 

and Walls 1980). This paper will not therefore give any detailed examples, since the 
usefulness of the methods has already been amply demonstrated in these earlier works. 

An example of the problems that arise in using the Glauber-Sudarshan P-represen- 
tation is the steady state of a coherently driven single mode interferometer with a 
nonlinear absorber. The Fokker-Planck equation? that results was obtained by 
Chaturvedi et a1 (1977): 

a a a2 -P(n)=( --[E-Ka - 2 ~ a ~ a * ] - ~ [ ~ a ~ ] + c c  
at aa aa 

Here E is the driving amplitude, and K, x are the linear and nonlinear rates of 
absorption respectively. The corresponding equation in real variables is obtained by 
transforming to the classical phase-space of position and momentum: 

x = ( a  +a*)/JZ, p = ( a  -a*) / i J2  (1.2) 
a a x a2 a2 
a t  ax 2 ax ap 
-P(x,  p)  = - - [E - Kx - ,yx ( p + x 2)] - - (7 - 7) ( x  - p 2 )  

a a a  
aP 

- - [-KP - XP ( P 2  + x ’)I - 2XG ap (PX )] P(x, P) . (1.3) 

This real variable equation clearly has a non-positive-definite diffusion term. 
For this reason, there is no corresponding stochastic differential equation on the real 

phase-space, and in fact no smooth normalisable steady-state distribution exists. 
If the lack of positive-definiteness was ignored, a nai‘ve application of stochastic 

theory would yield an It6 stochastic differential equation (Arnold 1974), with complex 
noise terms. In the (a ,  a*)  variables, this would have the following form: 

Here (&, t2) are independent Gaussian stochastic functions$, whose correlations 
are defined by: 

( & ( t ) [ j ( t ’ ) )  = s$(t - t ’ ) .  (1.5) 

However this naive procedure would cause a paradox to arise: the equations no 
longer allow a and a* to remain complex conjugate because &(t) ,  C2( t )  are indepen- 
dent. It can be noted that this procedure has been used in laser theory (Louise11 1974, 
Haken 1970). In the case of laser theory the non-positive-definite terms are normally 
negligible, which is not the case in the present example. 

We will show later that in fact equation (1.4) does give formally correct results, 
provided (a ,  a*) are replaced by (a ,  p), which are independent complex variables. This 
equation will be obtained in a rigorous way by using a generalised P-representation that 
includes both diagonal and nondiagonal terms in the coherent-state expansion of the 
density operator. 

t Throughout this paper, differential operators in Fokker-Planck equations act on all terms in products, 
including P(cu). 
$ The correlations in this case are different from those of a classical noise source, in which (&, 62) would 
normally be correlated. 
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An alternative approach would be to regard (a ,  a*)  as independent variables in 
equation (1.1). This means that an independent variable ( p )  would be substituted for 
(a*),  and moments would be defined as: 

We will show later that this is also a correct procedure which can be derived by a 
nondiagonal expansion of the density operator in coherent states. In fact this procedure 
leads to an exact solution for the steady-state moments, in the case of equation (1.1) 
when C, C' are defined as independent (non complex-conjugate) analytic contours. 

2. Generalised P-representations 

The quantum statistics of a single mode of the electromagnetic field (as well as other 
quantum problems involving bosons) is equivalent to that of an harmonic oscillator with 
annihilation and creation operators (6, 6'). All physical observables are obtained from 
the multinomial moments and correlations of (6, 6') (Glauber 1963a). These in turn 
are determined using the quantum density operator 6, and it is often simplest to 
represent p* using a distribution function over a c-number phase-space. It is usual to 
expand p* with the aid of the coherent states, defined as eigenstates of the annihilation 
operator: 

The Glauber-Sudarshan P-representation is an expansion in diagonal coherent 
state projection operators: 

p* = d2a Ia)(a lP(a, a").  I 
Because of the overcompleteness of the coherent states, the diagonal P-function 
P(a,  a*) is not unique, and does not always exist as a well-behaved function (although 
Klauder and Sudarshan (1970) have shown that it does exist in terms of distributions 
with singularities). Glauber (1963b) recognised these problems, and introduced the 
R-representation: 

which he showed always to exist, and to be unique provided that R (a",  p )  is analytic in 
a* and p. In spite of this, the R-representation has not been widely used, as 
Fokker-Planck equations for R (a*, p )  do not normally exist. 

We shall introduce a class of generalised P-representations, related to the R-  
representation, by expanding in nondiagonal coherent state projection operators. For 
simplicity, the term 'P-function' will still be used. 

Define: 
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and 

Here d p  is an integratio; measure, and P(a ,  p )  is analogous to the usual P-function. 
The projection operator h(a, p )  is analytic in (a, p ) ,  which will be of significance later. 

The integration measure is left undefined at present: by using various integration 
measures, a class of generalised P-representations is generated, scme of which will be 
investigated in detail in the remainder of this section. Existence theorems for these are 
obtained in § 3. 

2.1. The Glauber-Sudarshan P-representation 

Let 

d p  (a,  p )  = S2(a* - p )  d2a d2p. (2.7) 
This measure corresponds to the diagonal (Glauber-Sudarshan) P-representation. The 
existence properties of the corresponding P-function are well known (Glauber 1970, 
Cahill and Glauber 1969, Klauder and Sudarshan 1970). The representation defined 
using (2.7) is identical to that of (2.1). 

2.2. Complex P-represen ta tion 

d p  (a ,  p )  = d a  dp. 

Here (a ,  p )  are treated as complex variables which are to be integrated on individual 
contours C, C'. Theorems 1 and 2 show the existence of this representation under 
certain circumstances. In particular, the existence of this representation for an operator 
expanded in a finite basis of number states is of interest: this is a characteristic situation 
involving possible photon antibunching (anticorrelated photons), where the diagonal 
Glauber-Sudarshan P-representation would be singular. 

It is appropriate to call this representation the complex P-representation (as 
complex values of P(a ,  p )  occur). The representation gives rise to a P(a ,  p )  which can 
be shown to satisfy a Fokker-Planck equation obtained by replacing (a, a*) with (a ,  p )  
in the usual Glauber-Sudarshan type of Fokker-Planck equation. 

Under certain circumstances, exact solutions to Fokker-Planck equations occur 
which cannot be normalised as Glauber-Sudarshan diagonal P-functions. These can be 
handled with the present representation by choosing appropriate C,C' (paths of 
integration) in the complex phase-space of (a, p ) .  

2.3. Positive P-representation 

d p  (a, p )  = d2a d'p. (2.9) 
This representation allows (a, p )  to vary independently over the whole complex 

plane. Theorems 3 and 4 show that P ( a , p )  always exists for a physical density 
operator, and can always be chosen positive, in which case we call it the positive 
P-representation. This means that P (a ,  p )  has all the properties of a genuine prob- 
ability. 
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It will also be shown that, provided any Fokker-Planck equation exists for time- 
development in the Glauber-Sudarshan representation, a corresponding Fokker- 
Planck equation exists with a positive semi-definite diffusion coefficient for the positive 
P-representation. 

The resulting positive semi-definite Fokker-Planck equation will be shown to 
correspond exactly to the stochastic differential equation given by a nai've application of 
stochastic theory (for example, to equation ( l . l ) ) ,  with the replacement of (a,  a*) by 
(a ,  P ) .  

2.4. Operator identities 

From the definitions (2.5) of the nondiagonal coherent state projection operators, the 
following identities can be obtained. For simplicity, a is used to denote (a, P ) :  

6 A ( a )  = a A ( a )  (2.10) 

&'A(a) = (p  +a/aa)A(a) 

A(&)&+ = A(a,P 
A(a)6 = +&a). 

By substituting the above identities into equation (2.6) defining the generalised 
P-representation, and using partial integration (provided the boundary terms vanish), 
these identities can be used to generate operations on the P-function depending on the 
representation. 

2.4.1. Glauber-Sudarshan P-representation 

6$ = I (aP(a))A(a) d p  (a) 

6'6 = [ [(a* -a/aa)P(a)]A(a) d p ( a )  
J 

(2.11) 
6d' = J P(a) . a*A(a) d p ( a )  

$2 = [(a -a/aa*)P(a)]A(a) d p ( a ) .  I 
(From now on, only the equivalent operation on P(a) will be written explicitly.) 

2.4.2. Complex P-representation 

66 c* aP(a) 

6'6 * (p  - a/aa)P(a) 

$6' c* P(a)P 
(2.12) 

66 * (-a/ap + a)P(a). 

2.4.3. Positive-Prepresentation. We now use the analyticity of A(&, P )  and note that if 

a =a,+ia, 

P = P x  + i P y  
(2.13) 
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(2.16) 

The correspondences (2.1 1) are well known for the Glauber-Sudarshan P- 
representation, and can be used to obtain equations of motion and observables given 
the equation of motion (master equation) for 6. The new correspondences (2.12,2.16) 
can also be used in a similar way to obtain equations of motion for the new represen- 
tations. Observable properties, as regards moments of the annihilation and creation 
operators, are given by: 

((a*')"&") = I P(a)p"am d p ( a ) .  (2.17) 

Equation (2.17) is true for any representation, and also gives the normalisation 
property: 

1 = P(a) d p ( a ) .  (2.18) 

3. Existence theorems 

The existence properties of the diagonal (Glauber-Sudarshan) P-representation are 
well known: in many cases this P-function would only exist as a series of derivatives of 
delta-functions, or as the limit of a sequence. We will now show that the generalised 
P-representations defined using nondiagonal coherent state projection operators have 
much stronger existence properties. That is, a generalised P-representation exists, with 
a smooth P-function, even when the Glauber-Sudarshan P-function would be singular. 
The existence theorems are as follows: 

Theorem 1 .  A complex P-representation exists for an operator with an expansion in a 
finite number of number states. 
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where C, C’ are integration paths enclosing the origin. (The corresponding Glauber- 
Sudarshan P-function is highly singular in this case, as mentioned by Klauder and 
Sudarshan (1970)). 

Theorem 2. A complex P-representation exists for any operator with an expansion on a 
bounded range of coherent states, i.e. for 

6 = jlDsD, &a, P)C(a, P )  d2a d2P 

where D, D’ are bounded in each complex plane. 

(3.4) 

Proof. Application of Cauchy’s theorem shows that if 

(3.5) 
1 

P(a) = -211 [C(a’, @’)/(a -a ’ ) (p  -@’)I d’a’d’p‘ 
D,D’ 

then 

where C, C’ enclose D, D’ respectively. Hence the complex P-representation exists in 
this case relative to any bounded expansion in coherent state projection operators. 

Theorem 3. Whenever a Glauber-Sudarshan P-representation exists, a corresponding 
positive (nondiagonal) P-representation exists, with P(a) given by: 

(3.7) P(a) = ( 1 / 4 ~ ’ )  exp(-la -@*1’/4)(i(a +@*)lp*l(a +@*)/2). 

Proof. P(a) is real and positive by definition, since 6 is an Hermitian, positive-definite 
operator. Let P ’ ( a )  be the Glauber-Sudarshan P-function. Then by direct substitution 
into (3.7): 

P(a) = [1 /4~’ ]  P’(af ,  a’*) exp(-la -a’1’/2--lp*-a’1’/2) d’a’. (3.8) 

It is next necessary to demonstrate that P ( a )  as defined does represent 6, so the RHS 

J 
of equation (2.6) is evaluated: 

Now the projector f(a) is analytic in (a,  @) so the following identity can be used (for any 
analytic function f(a)): 

f(a’) = - f ( a )  exp(-la -a’/’/2) d’a’. (3.10) 
2T ‘I 

Hence 

11 i(a)P(a) d’a d’p = la’)(a’IP’(a’, a’*) d’a’ = 6. I (3.11) 
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This demonstrates that equation (3.7) does provide a real, positive representation of $; 
provided a Glauber-Sudarshan P-representation exists. 

Theorem 4. A positive P-representation exists for any quantum density operator. 

Proof. Define P(a) using equation (3.7) in Theorem 3. In order to show that this 
represents a quantum density operator in the general case, the characteristic function: 

x(A) ETr($ e’‘+ (3.12) 

is used. This has been shown by Glauber (1970) to define the density operator uniquely. 
In terms of the R-representation for $, the characteristic function is: 

x(A) =I R(a*,  A + a )  exp(-A*a - ~ a ~ 2 ) ( d 2 a / ~ ) ,  (3.13) 

We now substitute the R-representation for $ into equation (3.7), which defines P(a) in 
terms of the diagonal matrix elements of 5. We then define bp to be given by the positive 
P-representation form (2.6), calculate the corresponding characteristic function xp(h)  
using (3.12) and show this is the same as the original characteristic function for $. Thus: 

(3.14) 

+P’*(a +P*) /2+af* (a*+P)/2)  d2a d2P d2a’d2P’, (3.15) 

We now make a variable change by defining: 

7 = (a  +P*)/2 s = (a  - P*)/2 

:.a = ( y + S )  P* = (Y -8) (3.16) 

d2a  d2P = 4 d2 y d2S. 
Noting that R is an analytic function, the following identity is useful 

R b * ,  y )  =’ J R(a*,  P I  exp(yP* - IPI2) d2P. (3.17) 
7T 

Hence the above expression for the characteristic function can be simplified to give 

- Ia’12+a’y*) d2y d2a’  (3.19) 

(3.20) 

(3.21) 

= 1 R (a  *, A + a )  exp( -A *a - /a  1’) d2a 

:. xP(A)=Tr($ e e )=x(A). 
7T 

Ad+ -A’& 



Generalised P-representations in quantum optics 2361 

The last step follows from the identity for the characteristic function defined relative to 
the Glauber R -representation, as given previously. 

This result is more general than Theorem 3, as it demonstrates that a positive 
P-representation always exists with a smooth positive P-function regardless of the 
existence properties of the Glauber-Sudarshan P-representation. 

Theorem 5. The operator p̂  can be expanded directly in terms of its diagonal coherent 
state matrix elements. 

Proof. This is a trivial corollary of Theorem 4. From equations (3.7) and (2.6) 

(3.22) 

The above theorem in fact states a well known fact in quantum optics, namely that the 
diagonal coherent state matrix elements of p̂  define p̂  completely. A similar equation 
(although not identical) was obtained by Lonke (1978) using special function 
techniques. The present proof of this theorem, however, provides an elegant appli- 
cation of a generalised P-representation. 

4. Time development equations 

Using the operator correspondences appropriate to the Glauber-Sudarshan P- 
representation, a whole formalism has been developed (Lax 1968, Haken 1970, 
Louise11 1973) for converting quantum mechanical master equations into Fokker- 
Planck equations, which, as noted earlier, do not always have positive definite diffusion 
coefficients. Other representations on classical phase spaces were developed by Cahill 
and Glauber (1969), and more generally, by Agarwal and Wolf 1970.1 These 
representations also allow phase-space time development equations which may be of 
Fokker-Planck form, with diffusion coefficients that are not necessarily positive 
definite. We shall now consider what the corresponding equations are in the case of the 
generalised P-representations. 

4.1. Complex-P representation 

Here the procedure yields a very similar equation to that for the diagonal case. We 
assume that, by appropriate re-ordering of the differential operators, we can reduce the 
quantum mechanical master equation to the form (where (a, p )  = cr = (a"), a"'); 
p = 1,2) :  

C,C' 

C,C' 

(4.1) 

t Classical phase-space representations of this type may be calculated from the characteristic function 
provided the relevant Fourier integral exists. 
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We now integrate by parts, and, if we can neglect boundary terms, which may be made 
possible by an appropriate ckoice of contours C, C’, at least one solution is obtained by 
equating the coefficients of A ( a )  

This equation is sufficient to imply equation (4.1), but is not a unique equation because 
the A(a) are not linearly independent. It should be noted that for this complex 
P-representation, A ” ( a )  and D””(a)  are always analytic in a; hence if P ( a )  is initially 
analytic, (4.2) preserves this analyticity as time develops. 

Applying this procedure to equation (1 .l) would yield the following equation: 

-=[-(Ka+2Xn2p-E)-x at aa a (a, 7 a 2 + 7 p  a2 ap a’ 2 ,  +-(Kp+2*pZa-E) aap 1 P ( a ) .  

(4.3) 

(4.4) 

This has the following exact steady state solution: 

~ ( a )  = (a)fi-’(p)F*-’ exp[(E/x)(l /a + 1 / ~ ) + 2 a p ]  

where p = (K/x). 
It can be seen immediately that this potential would diverge if the Glauber- 

Sudarshan representation was used, with p =a*. Instead it is necessary to choose 
alternative paths of integration for (a ,  p )  that are to be line integrals on the individual 
(a,  p )  complex planes. This is straightforward, with the result that appropriate integra- 
tion paths are Hankel paths (Abramowitz and Stegun 1964) in the variables ( l /a ,  1/p) 
(Drummond 1979). A calculation of the correlation functions is given in the Appendix. 
The physical interpretation of these results will be treated in subsequent work. 

4.2. Positive P-representation 

We assume that the same equation (4.1) is being considered. The symmetric matrix can 
always be factorised into the form 

D ( a )  = B(a)BT(a).  (4.5) 

A ( a )  = A , ( a ) + i A y ( a )  (4.6) 

B(a)  = B,(a)+iB,(a) (4.7) 

We now write 

where A,, A,, B,, By are real. We then find that the master equation (4.1) yields 

%= J‘J‘ d2a d2p  A(a) (aP(a ) /d t )  
at 

= J’ J’ P ( ~  ) {A ; (a )a ; + A ; (a )a ; + ;{B :“B ;“a ;a ; 

+ B ~ ‘ B ~ u a ~ a ~ + 2 B ~ u B ~ u ~ ~ ~ ~ } ~ ( a )  d2a d2p. (4.8) 

Here we have, for notational simplicity, written a/aa,” = a*, etc, and have used the 
analyticity of A(&) to make either of the replacements 

a/aaFt.a;t. -ia: (4.9) 
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in such a way as to yield (4.8). Now, provided partial integration is permissible, we 
deduce the Fokker-Planck equation: 

aP ( (~ ) / a t  = [ -d;Az(c~) - a;Ay((~)  + $ { ~ " , ~ ~ " ( c Y ) B ~ " ( c Y )  

+ 2a",a;"(a)B;"(a) + a ;a~~"(a)B;"(a)}]P(a) .  (4.10) 

Again, this is not a unique time-development equation but (4.8) is a consequence of 
(4.10). 

However, the Fokker-Planck equation (4.10) now possesses a positive semidefnite 
diffusion matrix in a four-dimensional space whose vectors are 

(4.11) (1) (2) (1) (2) 
( a x  , a x  , a y  ,ay ) = ( a x , p x , a y , p y ) .  

We find the drift vector is: 

d ( a )  = (AY)(a), A',2'(a), AV'(a), A f ' ( a ) )  (4.12) 

and the diffusion matrix is: 

where: 

(4.13) 

(4.14) 

and 9 is thus explicitly positive semidefinite (and not positive definite). The cor- 
responding It6 stochastic differential equations can be written: 

(4.15) 

or, recombining real and imaginary parts, 

a a / a t  = A ( a )  + B ( a )  . g ( t ) .  (4.16) 

Apart from the substitution a* + p, equation (4.16) is just the stochastic differential 
equation which would be obtained by using the Glauber-Sudarshan representation, 
and naively converting the Fokker-Planck equation with a non-positive-definite 
diffusion matrix into an It6 stochastic differential equation. 

In our derivation, the two formal variables (a ,  a *) have been replaced by variables 
in the complex plane, (a, p )  that are allowed to fluctuate independently. The positive 
P-representation as defined here thus appears as a mathematical justification of this 
procedure. In the case of equation (1.4) the replacement would simply result in the 
following: 

" ( a )  = ( E  -I& -2xaZP) + (2ixa5df)) 
at p E - K p  -2xp2a 2ixP&(t) * 

(4.17) 

This equation has been treated asymptotically (in a linearised approximation valid 
for large photon number) by Chaturvedi et a1 (1977). These authors demonstrate that 
the resulting steady state correlation functions have the nonclassical statistical property 
of photon antibunching. 
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4.3. Application of the positive P-representation 

We have shown: 
(a) By Theorems 3 and 4 of § 3, that for any p  ̂ there exists a positive P-represen- 

tation, with a positive normalisable P which is a function of two complex variables. 
(b) If a Fokker-Planck equation exists, it can be cast in a form with real coefficients 

and a positive semidefinite diffusion matrix. Thus if P is initially positive, it stays 
positive. 

We have not shown that the explicit functional form of the P-function given in 
Theorems 3 and 4 is preserved by these equations, and in fact this is not the case in 
general. Thus it is clear that there is no unique positive P-function corresponding to a 
given $. However, the different possible P-functions do give the same observable 
properties, with regard to the multinomial moments and correlation functions of the 
annihilation and creation operators. Non physical moments of the form ((a,)") or 
( (ay )" )  are not unique for n > 1. 

It is interesting to compare this situation with that for the Q-representation, as 
defined as: 

Q(a) = ( ~ k l a ) .  (4.18) 

While the Q-representation is a unique, positive representation, it does not necessarily 
have a positive-definite Fokker-Planck equation or a corresponding stochastic 
differential equation. Furthermore, as this is an antinormally ordered representation, 
both the time-development equations and the expressions for normally ordered 
observables are complicated by extra derivative terms that are not present for general- 
ised P-representations as defined here. 

It is evident that the lack of uniqueness of generalised P-representations is not a 
disadvantage. Instead, it allows a freedom of choice in defining time-development 
equations which is extremely valuable in calculations for practical applications. 

Although the present paper is the first publication of the theoretical background of 
this approach in quantum optics, the technique of defining a complex phase-space with 
an equivalent positive-definite Fokker-Planck equation and stochastic equation has 
been used in earlier work. 

The usefulness of stochastic processes in the complex plane was first demonstrated 
without proof, by Gardiner and Chaturvedi (1977), Chaturvedi and Gardiner (1978), in 
work on the number state master equations of chemical reaction theory. The method 
was generalised to quantum optical applications by Chaturvedi et a1 (1977), Drum- 
mond and Carmichael(1978), Drummond eta1 (1979), Drummond and Walls (1980) in 
work on the nonlinear absorber, cooperative fluorescence, instabilities in nonlinear 
optics, and on optical bistability. A review of the application to a nonlinear inter- 
ferometer is given in the Appendix. 

5. Discussion 

A class of representations has been introduced, that generalises the Glauber-Sudar- 
shan P-representation. These representations are normal-ordering representations, 
defined on an integration domain that is a complex phase-space. The phase-space may 
be regarded as a complex extension of a classical phase-space, in which the canonical 
position and momentum variables now have complex parts. 
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Existence theorems have been derived showing that these generalised P-represen- 
tations have stronger existence properties than the Glauber-Sudarshan P-represen- 
tation (which is defined on a real phase-space). 

That is, non-singular P-functions for generalised P-representations exist even when 
the Glauber-Sudarshan P-function would be singular. An example of this is the 
nonlinear absorber (equation 1.1). While the diagonal P-function would be singular in 
this case, a smooth normalisable distribution can be found using a complex P- 
representation. 

The strongest existence theorem shows that at least one generalised P-function 
exists in all cases, that is real and positive, and its form is given explicitly. It is also shown 
that one can always choose a Fokker-Planck equation that is explicitly positive- 
semidefinite, even though (because of non-uniqueness), this Fokker-Planck equation 
does not necessarily preserve equation (3.7). The usefulness of positive-definite 
Fokker-Planck equations is that they allow the use of path-integrals (Graham 1977) 
and stochastic differential equations (Arnold 1974), which provide asymptotic approxi- 
mation schemes (Chaturvedi and Gardiner 1978) even when an exact solution for a 
nonlinear quantum system would be impractical. 

In terms of application of the methods outlined here, the main change in deriving 
and solving Fokker-Planck equations is the replacement of the complex-conjugate pair 
(a ,  a*) with a non complex-conjugate pair (a ,  p ) .  This may be written as (a,  a') 
provided it is recognised that while (a, a+) represent the Hermitian adjoint pair (&,a*') 
these new variables are not themselves complex conjugates, except in the mean. 

Thus Fokker-Planck equations on complex manifolds or stochastic differential 
equations on a complex phase-space can equally be used, with resulting moments 
obtained as: 

The results of this paper are readily generalised to the case of an n -mode quantum 
system. The generalised P-representation for n -modes is defined analogously to the 
n-mode R -representation of Glauber (1963b) as follows: 

where: 

Here (aj, af ) are the c-number analogues of thejth pair of annihilation and creation 
operators (dj ,  s t ) ,  and P ( a l ,  a : .  . . a:)  is a distribution in the space CZn (complex 
space of 2n dimensions) that represents the n-mode quantum density operator. 

In this case all the previous results relating to existence properties and positive- 
definiteness of the Fokker-Planck equation have a trivial extension. These results 
apply equally to n-modes, with the replacement of a =(a ,  a+) by a = 

In a subsequent paper we will derive techniques, arising from these generalised 
a:, * * a n ,  a:). 

P-representations, which can be applied to multi-time correlation functions. 



2366 P D Drummond and C W Gardiner 

Acknowledgments 

We would like to acknowledge helpful comments by Drs D F Walls, S Chaturvedi, 
H J Carmichael, K J McNeil and Mrs M Steyn-Ross. 

Appendix 

The steady-state problem of a coherently driven single-mode interferometer with a 
nonlinear medium is a good application of the generalised P-representation, as all 
orders of moments of the steady-state distribution are easily calculated. Here the 
interferometer is assumed to be a high-Q interferometer, where the medium response 
is much faster than the decay-rate of the quasi-mode of the cavity being driven. In 
addition, both the nonlinear dispersion and absorption during a transit-time of the 
interferometer must be relatively small, in order for the single-mode theory to be valid. 
The resulting model Hamiltonian including nonlinear polarisability and absorption is: 

5 

j = 1  
A= 

Here w1 is the relevant interferometer resonance frequency for a single (transverse 
and longitudinal) quasi-mode, with the same polarisation as that of the input field. The 
coefficient 8 is related to the coupled power P of the input beam by / E l 2 =  
P(l-  R)/(hwlA+), for a round-trip time At  and mirror reflectivity R. The driving laser 
is coherent, with frequency w. The operators f l ,  f 2  are reservoirs for one-photon and 
two-photon interactions respectively. The parameter xff is related to the nonlinear 
polarisability of the medium. These terms are explained in detail in Chaturvedi er a1 
(1977) and Drummond and Walls (1980). Using standard techniques the equation of 
motion for p* is obtained in the Markovian, rotating wave approximation and the 
interaction picture: 

In these equations, Aw = w l - w ,  and K’,x’ are the relaxation rates due to the 
reservoirs f,, f., respectively (the reservoir temperatures T I ,  T2 must satisfy kTl << hw, 
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kT2<< 2ho). The question is, then, how to determine the statistical properties of this 
non-thermal-equilibrium quantum system in the stationary limit of t + 03. To answer 
this, the complex P-representation is utilised to obtain a generalised Fokker-Planck 
equation: 

where 
KZK' f ihw 

x = X I  + ix". 
This has a potential-type solution similar to equation (4.4), even though detuning 

and nonlinear polarisability are included. For simplicity, the (arbitrary) phase of 8 is 
redefined so that 8/x is real and positive. A variable change is then made to variables 
5 = l / a ,  t' = l /a+.  In terms of the new variables, the integration paths are Hankel 
paths; from - 03 in each variable, around the origin in an anticlockwise direction and 
then back to - 03. The expectation value of an arbitrary normal-ordered moment of the 
field operators is then given by: 

exp[%(t + t+Yxl d t  d l +  (-44) a 11 [2j/j!]t(-j-n-w) + ( - i - m - * * )  t 
j=O 

C 

where 

P = (K/X). 

These integrals correspond to the definition of the gamma function. Also the 
infinite series is the defining series for the generalised Gauss hypergeometric function 
oF2. Including the normalising factor, the final result is 

The above results are obtained using the complex P-representation. Numerical 
evaluation of the generalised hypergeometric function is straightforward, and results 
are given in Drummond (1979), Drummond and Walls (1980). However, one simple 
result that obtains in the low-driving-field limit is the value of g 2 ( 0 ) ,  which equals 
I K / ( K  + x)I2. For the absorptive case this displays photon-antibunching, a nonclassical 
feature of the electromagnetic field. Finally, further results can be calculated using 
stochastic methods, in the positive P-representation. These are discussed by Chatur- 
vedi et a1 (1977) and Drummond and Walls (1980). 

While the stability properties of the equations of motion in this case will be identical 
to those of the 'naive' stochastic equations, some care is required in the calculations and 
in simuiation of these equations. 
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